Signetics

74123 Multivibrator

Dual Retriggerable Monostable Multivibrator Product Specification

Logic Products

FEATURES

- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses — up to 100% duty cycle
- Direct reset terminates output pulse
- Compensated for V_{CC} and temperature variations

DESCRIPTION

The '123 is a dual retriggerable monostable multivibrator with output pulse width control by three methods. The basic pulse time is programmed by selection of external resistance ($R_{\rm ext}$) and capacitance ($C_{\rm ext}$) values. Once triggered, the basic pulse width may be extended by retriggering the gated active LOW going edge input (\overline{A}) or the active HIGH going edge input (B), or be reduced by use of the overriding active LOW reset.

The basic output pulse width is essentially determined by the values of external capacitance and timing resistance.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74123	24ns	46mA

NOTE:

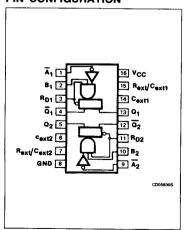
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

ORDERING CODE

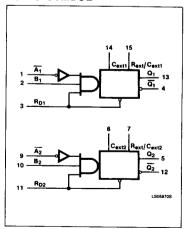
PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74123N
Plastic SO	N74123D

For pulse widths when $C_{ext} \le 1000 pF$, see Figure A.

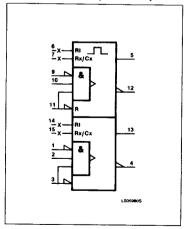
When $C_{ext} > 1000pF$, the output pulse width is defined as:


$$t_W = 0.28 R_{ext} \cdot C_{ext} (1 + \frac{0.7}{R_{ext}})$$

The external resistance and capacitance are normally connected as shown in Figure B. If an electrolytic capacitor is to be used with an inverse voltage rating of


less than 1V then Figure C should be used. (Inverse voltage rating of an electrolytic is normally specified at 5% of the forward voltage rating.) If the inverse voltage rating is 1V or more (this includes a 100% safety margin) then Figure B can be used. Note that if Figure C is used the timing equations change as follows:

$$t_W \approx 0.25 R_{\text{ext}} \cdot C_{\text{ext}} \left(1 + \frac{0.7}{R_{\text{ext}}}\right)$$


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

December 4, 1985

5-198

853-0513 81502

FUNCTION TABLE

INPUTS OUTPUTS R_D Ā В Q $\overline{\mathbf{Q}}$ х х L н L х н х L н Х Х Н н л T Ţ J ਾ Н Н лī ū н

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
Ā, B	Inputs	1ul
R _D	Input	2ul
Q, Q	Outputs	10ul

NOTE:

A 74 unit load (ul) is understood to be 40 μ A l $_{IH}$ and -1.6mA l $_{IL}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
Vcc	Supply voltage	7.0	٧
V _{IN}	Input voltage	-0.5 to +5.5	٧
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to 70	*C

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			
		Min Nom Max			UNIT
Vcc	Supply voltage	4.75	5.0	5.25	٧
1 _{IK}	Input clamp current			-12	mA
I _{OH}	HIGH-level output current			-800	μΑ
l _{OL}	LOW-level output current			16	mA
TA	Operating free-air temperature	0		70	°C
V _{iH}	HIGH-level input voltage	2.0			٧
V _{IL}	LOW-level input voltage			+0.8	٧

H = HIGH voltage level

L = LOW voltage level

X = Don't care

⁼ LOW-to-HIGH transition

⁼ HIGH-to-LOW transition

T = One LOW-level pulse

74123

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER		TEST CONDITIONS		74123			
		lESI C	TEST CONDITIONS ¹		Typ ²	Max	UNIT
V _{OH}	HIGH-level output voltage ⁵	V _{CC} = MIN, I _{OH} = MAX	V _{CC} = MIN, I _{OH} = MAX		3.4		V
V _{OL}	LOW-level output voltage ⁵	V _{CC} = MIN, I _{OL} = MAX			0.2	0.4	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = I _{IK}		-		-1.5	v
ŧį	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5V				1.0	mA
I _{IH}	HIGH-level input current	V MAY V - 0.4V	Ā, B inputs			40	μΑ
чн	nigh-level input current	$V_{CC} = MAX, V_1 = 2.4V$	R _D input			80	μΑ
l _{IL}	LOW-level input current	V - MAY V - 0.4V	Ā, B inputs			-1.6	mA
'IL	LOW-level input current	$V_{CC} = MAX, V_I = 0.4V$	R _D input			-3.2	mA
los	Short-circuit output current ^{3, 5}	V _{CC} = MAX		-10		-40	mA
lcc	Supply current ⁴ (total)	V _{CC} = MAX	Quiescent		46	66	mA
·CC	oupply current (total)	ACC - IAIWY	Triggered		46	66	mA

NOTES

AC ELECTRICAL CHARACTERISTICS $T_A = 25$ °C, $V_{CC} = 5.0$ V

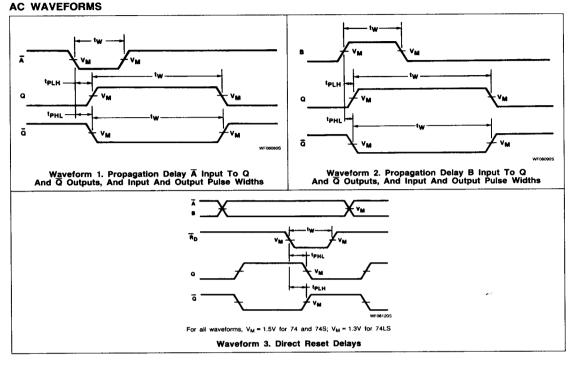
PARAMETER					
		TEST CONDITIONS		$C_L = 15pF, R_L = 400\Omega$	
			Min Max		7
t _{PLH} t _{PHL}	Propagation delay A input to Q & Q output	Waveform 1 $C_{\text{ext}} = 0 \text{pF}, R_{\text{ext}} = 5 \text{k}\Omega$		33 40	ns
t _{PLH} t _{PHL}	Propagation delay B input to Q & Q output	Waveform 2 $C_{ext} = 0pF, R_{ext} = 5k\Omega$		28 36	ns
t _{PLH} t _{PHL}	Propagation delay R _D input to Q & Q output	Waveform 3 C _{ext} = 0pF, R _{ext} = 5kΩ		40 27	ns
twQ	Minimum Q pulse width	Waveforms 1 & 2 $C_{\text{ext}} = 0 \text{pF}, R_{\text{ext}} = 5 \text{k}\Omega$		65	ns
twQ	Output pulse width	Waveforms 1 & 2 $C_{ext} = 1000pF,$ $R_{ext} = 10k\Omega$	2.76	3.37	μs

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V

PARAMETER		TEST COMPLETIONS	74		
		TEST CONDITIONS	Min	Max	UNIT
tw	Minimum input pulse width	Waveforms 1, 2 & 3	40		ns
R _{ext}	External timing resistor range		5.0	50	kΩ
C _{ext}	External timing capacitance range		No restriction		pF
C _{Rx/Cx}	Stray capacitance to GND at Rext/Cext terminal			50	pF

December 4, 1985

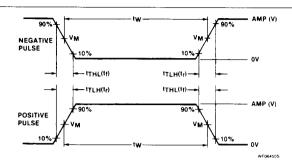
5-200


^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

^{2.} All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.

^{3.} los is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

^{4.} Quiescent I_{CC} is measured (after being reset) with 2.4V applied to both R_D and Ā inputs, B inputs grounded and all outputs open. Triggered I_{CC} is measured with 2.4V applied to all R_D and B inputs, Ā inputs grounded and all outputs open. For both measurements, C_{ext} = 0.02μF and R_{ext} = 25kΩ.


^{5.} Ground Cext to measure VOH at Q, VOL at Q, or los at Q. Cext is open to measure VOH at Q, VOL at Q, or los at Q.

74123

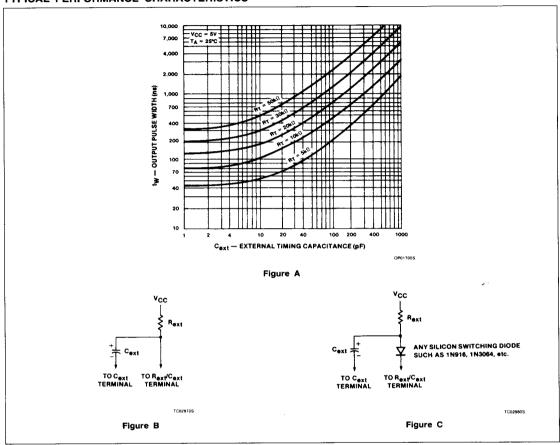
TEST CIRCUITS AND WAVEFORMS

 V_{M} = 1.3V for 74LS; V_{M} = 1.5V for all other TTL families. Input Pulse Definition

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

$$\begin{split} &R_L = Load \ resistor \ to \ V_{CC}; \ see \ AC \ CHARACTERISTICS \ for \ value. \\ &C_L = Load \ capacitance \ includes \ jig \ and \ probe \ capacitance; \\ &see \ AC \ CHARACTERISTICS \ for \ value. \end{split}$$


 R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\mathsf{TLH}},\ t_{\mathsf{THL}}$ Values should be less than or equal to the table entries.

FAMILY	INPUT PULSE REQUIREMENTS						
FAMILY	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}		
74	3.0V	1MHz	500ns	7ns	7ns		
74LS	3.0V	1MHz	500ns	15ns	6ns		
74S	3.0V	1MHz	500ns	2.5ns	2.5ns		

TYPICAL PERFORMANCE CHARACTERISTICS

